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Abstract

SAR imagery for coastline detection has many potential advantages over conventional
optical stereoscopic techniques. For example, SAR does not have restrictions on being
collected during daylight or when there is no cloud cover. In addition, the techniques
for coastline detection with SAR images can be automated.

In this paper, we present the algorithmic development of an automatic coastline de-
tector for use with SAR imagery. Three main algorithms comprise the automatic coast-
line detection algorithm. The first algorithm considers the image pre-processing steps
that must occur on the original image in order to accentuate the land/water boundary.
The second algorithm automatically follows along the accentuated land/water boundary
and produces a single-pixel-wide coastline. The third algorithm identifies islands and
marks them.

This report describes in detail the development of these three algorithms. Examples
of imagery are used throughout the paper to illustrate the various steps in algorithms.
Actual code is included in appendices. The algorithms presented are preliminary versions
that can be applied to automatic coastline detection in SAR imagery. There are many
variations and additions to the algorithms that can be made to improve robustness and
automation, as required by a particular application.
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1 Introduction

Currently there are many miles of US coastline that have not been mapped. While

adequate mapping is certainly of use in navigation, these maps are also of crit-
ical importance in determining US coastal boundaries. The locations of these
boundaries are used in determining legal rights (ownership and liability) in vari-
ous off-shore ventures.

Traditionally, coastline mapping has been done via optical stereoscopic imaging.
The actual boundary is determined by some combination of the lowest low-tide

and the highest high-tide. However, since optical stereoscopic images are used, it
is often impossible to get images of the desired location at exactly lowest low-tide

or highest high-tide. The optical stereoscopic imaging systems require the correct
illumination and a clear view (i.e. no clouds). Optical stereoscopic imaging for
coastline detection is also a time consuming, non-automated process.

In an effort to find more robust alternatives for coastline detection, SAR has been

proposed. SAR has a variety of possible benefits. First, SAR does not require
flying during daylight. Also, SAR is effective, even if clouds are present. In

addition to forming a traditional SAR image, if interferometric SAR is used, it
may be possible to form a height map of the area and to extract the boundary

from the height map.

In this report, we will present an algorithm for automatically identifying the
coastline boundary in a standard (non-interferometric) SAR image. Using this

technique with any SAR image, a land/water boundary can be identified. That
boundary, itself, could be a viable final result. However, if two SAR images are

available at low and high tides, the coastal boundary could be found by judicious
combination of the two high- and low-tide boundaries.

The main benefit of this coastline detection is that the process can be automated.
The algorithm appears to be fairly robust, but it has only been tested on Alaska
coastline data. This report describes in detail the development of the coastline al-

gorithm and the parameters used. Examples of actual imagery are used throughout

the paper to illustrate the various steps in algorithm. Actual code is included in
appendices.

2 General Approach

The approach taken to solve the automatic coastline detection problem can be bro-
ken into three main parts. The first part is to perform a variety of image processing
steps on the original image in order to accentuate the land/water boundary. This
is necessary in order to make a robust contour following program that can work
consistently on a wide variety of coastline data. The second part of automatic

coastline detection is to automatically follow along the accentuated land/water
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boundary resulting from the first step andtoproduce asingle-pixel-wide bound-

ary of the shoreline. The third part is to identify any existing “islands” in the
image. An “island” is a group of pixels that meet the land criteria, but that are in
what the algorithm identifies as water. At this time, the algorithm only identifies

islands. No attempt is made to find coastlines of the islands, although this could
easily be added.

2.1 Land/Water Boundary Enhancement

In order to be able to accentuate and identify a land/water boundary, one must
come up with some criteria to distinguish land from water. Ultimately, we are in-
terested in a single pixel boundary to mark the transition between land and water,

therefore our criteria will be applied ultimately on a pixel by pixel basis. However,

there is a large degree of pixel-to-pixel variety in a SAR image of either just land
or just water. We must come up with a way of minimizing that variation within
pixels of land and within pixels of water, while maintaining distinct characteristics
for each. We achieve these goals through a series of image processing steps.

2.1.1 MEDIAN FILTERING

The first step is a median filtering operation. In this step a 3x3 window is scanned
over the entire image. At each step in the scan, the center pixel is replaced by
the median value of the 9 pixels in the window. The effect of a median filter is to

remove single points whose values are out of line with neighboring pixels. In the
particular context of SAR images of coastlines, a median filter minimizes (1) the
speckle normally associated with SAR images and (2) the bright returns from ice,
rough water or other matter in a predominantly dark part of the image (water).

The median filtering is actually performed twice, i.e. the output of the median

filtering process described above is again median filtered. With each additional
pass, there is added minimization in variation. Ultimately, however, the incremen-
tal change between passes becomes negligible. The median filtering process is time
consuming on large images. Empirically two passes of a 3x3 median filter appear
adequate for our purposes. This is discussed in more detail in the Implementation

section.

A median filter can be thought of as a smoothing filter, but a significant difference
with respect to edges must be understood and emphasized. A median filter will

not blur the transition point or edge as a traditional, low-pass, smoothing filter
would. This is important when maintaining a sharp and accurate transition point

is required.
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2.1.2 HISTOGRAM EQUALIZATION (FLATTENING)

The next step to accentuate the land/water boundary is a histogram flattening

step. In this step, a histogram is made of the image after median filtering. The
histogram is a count of how many times each pixel value (O - 255) actually occurs in
an image. The flattening step re-maps the pixel values in the image, such that the
histogram after equalization is constant (hence the term “histogram flattening”).

With a flat histogram, each possible pixel value occurs the same number of times,
i.e. the probability density function for pixel values O through 255 is uniform.

The main effect of histogram equalization is to increase the contrast throughout
the image. This is done by effectively allocating more pixel levels where the most
pixels are originally, and allocating fewer pixel levels where there are fewer pixels

originally.

An added benefit of histogram flattening is that it helps to “standardize” the look
of the images. This will enable us to determine characteristics for land and water
that are the same for different images. This feature is of particular importance in

making a robust automatic coastline detector.

2.1.3 THRESHHOLDING

The next image processing step
holding. This step is where we

for land/water boundary enhancement is thresh-
apply a distinction between land and water. In

general, we expect the radar return from land to be higher than from water. As
a result, land pixels generally have a higher pixel value than water pixels. There

are exceptions, however. Ice or turbulence in the water can have a significant
radar return (i.e. higher pixel values). Similarly, land that is in a shadow (from a
cliff) can have a very low radar return, since it is not illuminated with much radar

energy. In this step, we apply a threshhold of 200 to distinguish land from water

in the histogram flattened image. This is a non-linear step, in which a pixel with
a value < 200 is assigned a value of O, and pixels with a value >200 do not have
their pixel value changed.

Because of the histogram flattening step, the threshhold value of 200 should be

effective for a variety of images. It is possible, however, that different imaging

scenarios may produce SAR images that have different characteristics for land
vs. water. In that case, this threshhold may need to be altered to optimize the

algorithm’s performance.

2.1.4 MAXIMUM FILTERING (DILATION)

The final image processing step for the land/water boundary enhancement is two
passes through a maximum (or dilation) filter. The mechanics of this step are

very similar to the median filtering step. In this case a window is scanned over the
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entire image. However, at each step, the center pixel is replaced by the maximum

value of all the pixels in the window.

The effect of a maximum filter is to make the brighter areas larger, and the darker

areas smaller. Although the resulting image can be greatly distorted, the general
shape of large areas of brightness and darkness are preserved. As a result, this step

is useful in image segmentation. For our particular application, we would specif-

ically like the dilation operator to accomplish two things: ( 1) Make a continuous
exterior boundary (without any gaps) between interior land and exterior water.
(2) Minimize shadow regions in the interior land.

The dilation filtering is performed with a 7x7 window. It is also performed in

two passes. The 7x7 dilation process is time consuming for a large image. Two
passes seems to be a nice compromise in terms of closing the exterior boundary

gaps, while also not extending the actual borders too much. (With two 7x7 passes,
it is possible to extend the land/water boundary by 14 pixels beyond the actual
boundary.) If this extension is unacceptable, some additional steps may be added

to mitigate the extension on the boundary, while still maintaining the benefit of
closing gaps in the boundary. Closing the gaps in the boundary is critical to
the operation of the automatic contour following algorithm, as discussed in the
following section.

2.2 Contour Following

Once the image processing steps have been performed to enhance the land/water
boundary, the next step is to form and mark a one pixel wide boundary between
the land and water.

The algorithm we employ to do the contouring is based on one of the most simple

available. The simple clockwise contour following algorithm by Duda and Hart is
described in several places. [BB82, DH73] The technique involves scanning across
an image until a pixel that is part of the object to be outlined is encountered.

This is the starting point. From the pixel, turn left and move one pixel. Each

time a pixel that is part of the object is encountered, turn left and move one pixel.

If a non-object pixel is encountered, turn right and move one pixel. Repeating
this process, the entire object boundary will be traversed (albeit in a serpentine
fashion) in a clockwise direction. This is illustrated in Figure 1.

We extend and modify this algorithm to coastline detection as follows. For coast-
line detection, we do not necessarily have land that we completely encircle. In
general, in an image of a coastline there is a main land mass on one side or an-
other of the picture (right or left). If we always start our scans at the bottom
of the image, it may be necessary to follow the contour in either a clockwise or

counter-clockwise direction. We can extend the contour following algorithm from

Duda and Hart to counter-clockwise following by: ( 1) turning right and moving

one pixel if you encounter an object pixel; and (2) turning lefl and moving one
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Figure 1: Example of

:
:
:
:.

:.
1

.

. . . . . . . . . . . . . . . . . . . .

how the contour of an object is traced in a clockwise direction.

pixel if you encounter a non-object pixel.

Therefore our coastline following algorithm will require the user to specify if land
is on the right side or left side of the figure. The image then will be scanned from

the bottom until an object pixel is reached. If land is on the right, the scan starts

from the left, and vice versa. From this starting pixel, the boundary is traced
clockwise if the land is on the right. It is traced counter-clockwise if the land is
on the left. The coastline tracing will terminate when it reaches within the top 10
rows of the image, or if it returns to within one pixel or to the same row as the

original starting pixel.

As the algorithm is implemented now, the program will terminate after it traces
out a boundary island at the bottom of the image. Additional programming can

be added to have the program continue until the main coastline has been found

and traced.

The simple algorithm we are using has some drawbacks. First, it is possible for
the algorithm to miss a pixel that is only connected diagonally with a previously
identified part of the object. Also, this algorithm requires that the object to be
outlined have no gaps in it. If there is a gap, the contour following algorithm will
follow into the interior of the object. It is this requirement that necessitates the
dilation step in the image preprocessing, In general, we expect that the two 7x7

dilation operations should remove gaps in the exterior boundary. There may be
some cases, however, where this may not be sufficient. Additional dilation steps
may be needed in some cases.

Finally, we don’t want the serpentine path to be the boundary, so we mark any
land pixels that the serpentine path contains as boundary pixels. A land pixel is

any pixel with value >200. The boundary pixels are given a value of 255.
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2.3 Island Detection and Marking

The final part of our automatic coastline detection is not actually involved with
detecting the coastline. Instead, the purpose of this final step is to mark land pixels
that are beyond the mainland, in water. The reason for this is that there may be

barrier islands of substantial size, whose boundaries might actually be the coastline
of interest. The way the automatic coastline detection algorithm is designed and

implemented, it will in general find the coastline between the mainland and ocean.

(The exception is for a barrier island that exists at the bottom of the image).

The goal of this final step is to mark islands, so that an analyst can determine if
those barrier islands significantly alter the identified mainland coastline. At this
time, this determination is made by an analyst, It should
automatically find the boundaries for the “islands”, and

coastline” appropriately.

3 Algorithm Implementation

be possible, however, to

to modify a “maximum

3.1 Image Pre-Processing for Land/Water Boundary En-
hancement

The image processing steps described in the previous section for land/water bound-
ary enhancement are straightforward image processing steps. In order to imple-

ment them, we used a standard C language library for digital signal and image

processing. The library routines used are found in C Language Algorithms for

Digital Signal Processing by Paul Embree and Bruce Kimble. [EK91] Additional
rout ines for adding and removing the D SP header format, for threshholding and
for doing nonlinear filtering with various size windows were written. The routines

used in this project are included in the appendix.

3.2 Contour Following

The basic algorithm for contour following was described in the previous section.

In order to implement both clockwise and counter-clockwise boundary following,
without having to write two completely separate branches, requires some analysis.

3.2.1 Conventions

In order to do the analysis to combine the two cases for clockwise and counter-
clockwise boundary following, we adopt some conventions and terminology. First,

we assume that an image is indexed such that the upper left corner is (0,0). The
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index for rows, i, increases as you go down. The index for columns, j, increases as

you go right. This is illustrated in Figure 2.

Image

Figure 2: Convention for row and column indexing of an image.

Next, the orientation when entering a pixel is important. If a pixel is entered from

the left, we label that verbally “IL” and numerically “O”. (The vector describing

entering from the left, ~, makes a 0° angle with respect to the positive z axis. )

Similarly, if a pixel is entered from the right, we use the labels “IR” and “180”.
If a pixel is entered from the top, the verbal label is ‘(IT” and “270”. Finally, if a

pixel is entered from the bottom, we use the labels “IB” and “9o”.

The final important piece of information required by the algorithm is if the bound-
ary is to be traversed in a clockwise or counter-clockwise direction. We assign a

numerical label of 1 for clockwise traversal, and -1 for counter-clockwise traversal.

With these conventions, we can do the analysis of the algorithms and write logic to

handle the different steps required for clockwise and counter-clockwise traversal.

3.2.2 Starting point

When the first land pixel is identified, the start orientation and the index changes

needed to get to the start pixel will be different for clockwise (C W) and counter-
clockwise (CCW) traversal.

CW (DIR= 1) CCW (DIR= -1)

Orientation 180°

Start Pixel (i, j - 1) (i, j“l 1)

This can be reduced in both cases to the rules in the following table.

Orientation 90° + 90°” DIR

Start Pixel (i, j - DIR)

7



3.2.3 Next Pixel Location

The location for the next pixel depends on 3 things: (1) the direction for boundary
traversal; (2) orientation into current pixel; and (3) the current pixel value. This

is illustrated in the following pictures and tables.

Case Pixel Value = Land Next Pixel Location

CW (DIR = 1) CCW (DIR = -1)

“o” + •1 Y i-1 i+l
“o” + •1 N i+l i-1

“270” J
❑ Y j+l j_l

“270,, J,

❑ N j.1 j+l

“180’” ❑ + Y i+l i-1
“180’” ❑ t N i-1 i+l

“go,, ❑

T Y j-l j+l
“go>, rJ

-r N j+l j.1

For both CW and CCW traversal, this can be reduced as follows:

Case Pixel Value = Land Next Pixel Location

“o” + •1 Y i - DIR
“o” + ❑ N i + DIR
“~~o>, J

❑ Y j + DIR
“270” j,

❑ N j - DIR

“180” ❑ t Y i + DIR
“180’” ❑ t N i - DIR

“q)>, ❑

T Y j - DIR
“go,, ❑

T N j + DIR

3.2.4 Orientation for Next Pixel

The orientation for the next pixel also
the following table.

depends
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Current Orientation Clockwise Counter Clockwise
Land Not Land Land Not Land

IL IB IT IT IB
“(y, ~ ❑ 1$0 270 270 180

IT IL IR IR IL
,’270,, J

❑ o 180 180 0

IR IT IB IB IT
“180’” ❑ t 270 90 90 270

IB IR IL IL IR
“go)> ❑

T 180 0 0 180

Once again, this can be reduced to the following logic for CW and CCW traversal.

Current Orientation Orientation for Next Pixel
Land Not Land

IL
“()” + ❑ 0+90* DIR O-90*DIR

IT
,,270,, *

❑ 270+90* DIR 270-90* DIR

IR
“180” ❑ t 180+90* DIR 180-90* DIR

IB
“go,, ❑

T 90+90* DIR 90-90* DIR

3.3 Island Detection and Marking

The goals for island detecting and marking seem quite simple, however it is some-
what complicated to implement. The way the island detection goal is achieved is

by scanning the image and cleaning land pixels which are part of the “mainland”.
Intuitively, it is easy to just clear pixels from the right edge (assuming land is on
right ) until a boundary is reached. When a boundary is reached, the algorithm
should switch from clearing pixels to saving land pixels. The factors which cause
complications are bays or coves, and horizontal boundaries. With some analysis,

however, logic can be written to handle these situations.

In general, when a single boundary pixel (i.e. it is not part of a number of con-

secutive horizontal boundary pixels) is encountered, the algorithm should toggle
between clearing pixels and not clearing pixels. The case is not so straightforward,

however, when a row of consecutive, horizontal boundary pixels are encountered.

The analysis becomes more clear if we adopt a few more conventions.

9



3.3.1 Conventions

The topology at the beginning and end of a horizontal boundary run, along with
the initial state of clearing/not clearing pixels and the direction of the scan will

determine if the clear pixel variable should be toggled or not.

Let B designate a border pixel that is at the beginning of a horizontal run. Let

E designate a border pixel that is at the end of a horizontal run. There are four

possible topologies we need to label. These are illustrated in Figure 3. With either
B or E in the center of a 3x3 window, if the pixels above and to the above right

are also boundary pixels, the topology is labeled “l”. (Note that the pixels in the
first quadrant are boundary pixels.) If the pixels below and below right are also
boundary pixels, the topology is labeled “4”. (Note that the pixels in the fourth
quadrant are boundary pixels. ) Similarly, if the pixels above and above left are
also boundary pixels, the topology is labeled “2”. (Note that the pixels in the
second quadrant are boundary pixels. ) Finally, if the pixels below and below left
are also boundary pixels, the topology is labeled “3”. (Note that the pixels in the
third quadrant are boundary pixels. )

* * * *

==> “2” ==> “l”
B/E B/E

-# ‘=>3 # .=>,

Figure 3: Convention for how beginning and ends of horizontal boundary runs are labeled. *

indicates a boundary pixel.

The 8 cases for scanning from right to left are illustrated in Figures 4 and 5. In
these figures, C indicates the clearing pixels state (i.e. pixels should be cleared),
and ~ indicates the state where pixels aren’t cleared.

10



=1
~ &v_l.../ ‘:

c :6.:

=3
Land

‘r

water u.Land Water

=1

F ~Ei c }-iii ~
:=2 h...-...:

....; ~....,
B=4 F ~.% c VV

r

:

E=3
Water Land wat(

I!_Water1=4
...

c ;E: c ;B 7;=~
Land ‘“”””

11

....
water

Figure 4: Assuming scanning from right to left, this figure illustrates the four possible cases
for horizontal runs with water on the right of the horizontal boundary run.

I B I E I Clear Pixel State I

1 3 Toggle

1 2 Don’t Toggle
1

14131
1

Don’t To~~le
I

4121 Toggl;-

In the table we see that if the II? – El = 2, the clear pixel value should be toggled.
If 113– El = 1, the clear pixel value should stay the same before and after the

horizontal run.
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Figure 5: Assuming scanning from right to left, this figure illustrates the four possible cases
fo~ horizontal runs with land on the right of the horizontal boundary run.

The 8 cases for scanning from left to right are illustrated in Figures 6 and 7. In
these figures, C indicates the clearing pixels state (i.e. pixels should be cleared),
and ~ indicates the state where pixels aren’t cleared.
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Figure 6: Assuming scanning from left to right, this figure illustrates the four possible cases
for horizontal runs with water on the right of the horizontal boundary run.
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Figure 7: Assuming scanning from left to right, this figure illustrates the four possible cases
for horizontal runs with land on the right of the horizontal boundary run.

I B I E I Clear Pixel State ]

3 1 Toggle

2 1 Don’t Toggle

3 4 Don’t Toggle,
2141 Toggli-

Once again we see that if the 113– E\ = 2, the clear pixel value should be toggled.
If \B – El = 1, the clear pixel value should stay the same before and after the

horizontal run.
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4 Results

The algorithm for automatic coastiine detection was tested on the image shown
in Figure 8. This image has 12592 rows and 2000 columns. There are two final
results: ( 1) the original image with the coastline overlayed; and (2) the coastline,

itself, with the islands shown. The large size of the image make it difficult to
display the single pixel coastline overlayed on the original image (the single pixel

becomes too fine to see). Figure 9 shows the single pixel coastline that is output
from the algorithm, along with the detected islands.

Figure 8: Original large coastline analyzed.
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Figure9: Boundary for Original large coastline analyzed.

In order to better understand the algorithm, it is helpful to examine intermediate

results. In order to better illustrate the actions of the algorithms, we will work will

a smaller subset of the large coastline. Figure 10 is a 1999 by 1999 subset taken

from Figure 8. Results from each of the intermediate steps done on this smaller

image are shown in subsequent figures.
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Figure lO: Original 1999 x1999 coastline analyzed.

Figure 11 is the image after two passes through the 3x3 median filter. After the
median filtering, the variations in the water and land are reduced. There are some
additional bright pixels added, but the overall speckling is reduced. There are

still some residual areas of moderate reflectance in the water, especially near the
shoreline. Subsequent passes through the median filter would help to remove this,
but at the cost of longer computation time.

Figure 12 is the image after median filtering and histogram flattening. The flat-
tening brings out all the details in the water that we will need to remove. It is

clear from this figure that in general the pixel values in water have a lower value
than those in land.

Figure 13 is the result of threshholding the previous image at a value of 200. The

threshholding level was chosen empirically. Because of the histogram equalization

step, this value should be fairly robust. Depending on different imaging geometries

or terrain (different land or water conditions), the actual threshhold value may
need to be changed to give optimal performance.

The final image processing steps are two passes through a 7x7 dilation filter. Recall
that these steps are necessary to close any gaps in the land/water boundary. The
results of the dilation filtering are shown in Figure 14. The effect of the dilation

is to make the bright parts of the images grow. As a result of the dilation, the

17



Figure 11: Results after two passes with a 3x3 median filter.

border does move out slightly.

After the image processing steps are completed, the coastline is identified using the

count our following algorithm. Figure 15 shows the detected coastline overlayed on

the original image. As discussed previously, the detected coastline is continuous
and one pixel thick.

Figure 16 is the detected coastline and the identified islands. The coastline for
the islands are not automatically detected. The main purpose is to indicate the
presence of islands to an analyst. The analyst can then determine if the islands are

significant enough to warrant recalculation of the coastline. Further modifications

to the software can be added that can handle certain conditions automatically.
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Figure 12: Results after median filtering and histogram equalization.
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Figure 13: Results after median filtering and histogram equalization and threshholding at 200.
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Figure 14: Results after median filtering, histogram equalization, threshholding and two passes
of a 7x7 dilation operation.

21



F
iI

22

.al



23



The image we have been studying has some interesting features. Note that in

Figure 10, the upper peninsula has a high cliff, which causes a shadow in the land.

This is a rather difficult situation for the algorithm to handle, because the shadow
from the cliff is so close to the shore. Here the dilation step is critical. Without

it, the countour following algorithm would have “walked” inland and made the

shadow into a bay.

In Figure 10, there are various isolated bright pixels near the shoreline. We do not

have ground truth, but these bright returns could be due to either rocky jetties, or
due to ice chunks in the water. The image processing steps attempt to minimize

the smaller isolated returns that could be small ice chunks, while maintaining
larger, brighter clusters. The image processing steps also try to cluster with the
mainland bright pixels very close to the shoreline. The contour following then

follows the mainland coastline, but any significant isolated clusters in the water
are marked.

Another interesting feature is shown in Figure 17. Near the shoreline there is a
very smooth light gray border. Once again we do not have ground truth, so it is
hard to know if the image shown in Figure 17 contains a shallow beach with water

covering some of the sand, or if it is an artificial artifact of the image formation.
This area needs to be ground truthed, in order to see how accurately the algorithm
performed.
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Figure 17: Subset of the large coastline including a beach. The detected coastline is overlayed
on the original image.

25



5 Conclusions

In this report we have presented an automatic coastline detector for SAR imagery.

The algorithm requires some image pre-processing before the coastline detection

step is run. The results from the algorithm are a single pixel boundary between
land and water, and the identification of islands. The algorithm appears to be
robust, but more testing is necessary. Also, many variations and additions to the
algorithm can be made, as required by a particular application.

6 Future Work

This report simply documents a first-cut algorithm directed at automatic coastline
detection in SAR images. Future work to this algorithm includes further assess-

ment of robustness and addressing specific requirements for specific applications.
These might be such things as automatically finding island boundaries, in addition
to just identifying the islands, and altering the start and stop conditions perhaps

to guarantee finding a mainland/water boundary. Future work also includes trans-
forming the detected boundary to standard earth coordinates.

A Example of How to Run Automatic Coastline

Detection Code

This appendix shows the sequence of programs to run to produce the automatically
detected coastline and overlays. The programs are assumed to be in a directory

/CODE that is at the same level as a directory containing the data. The original
data is a one byte detected image, with suffix .s1. All the image processing code
works on dsp files with a .dsp suffix. The .i suffix refers to images without header

and in a short int format. saoimage is a UNIX tool for displaying images.

Following is a brief description of the various codes. The codes use the image pro-
cessing library supplied wit h Reference [EK91 ]. Additional programs were written
to implement the automatic coastline detection. These additional programs that
are not part of the image processing library supplied with Reference [EK91] are
included in subsequent appendices.

extractsubsetDSP is a program that extracts an image subset from a one byte

image. From the subset, it produces a dsp file and a short int image file.

nonlin2dsize is a program that performs multiple types of nonlinear filtering:

erosion, dilation or median filtering. This program takes user input to determine
the type of filtering, the window size and the number of passes.

flatten is a program that performs the histogram equalization on an image,
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threshhold is a program that thresholds an image. It takes a threshold value as

user input.

followboundarytopologyV2 is the code that includes the contour following. It
takes as input the preprocessed im”age, and returns a file containing the coastline

and islands.

overlay is a program that takes the boundary found in followboundarytopologyV2

and overlays it over an image.

removehdr is a program that strips off the header from a dsp file. The result is
a short int image file that can be used in a number of display programs.

> . . /cODE/extract/extractsubsetDSP rma.out .2048 .16384. S1 test .dsp test. i
Enter the number of rows to skip

4000
Enter the number of columns to skip

o
Enter the number of rows Input

16384

Enter the number of columns Input

2048

Enter the number of rows Output

1999

Enter the number of columns Output

1999

Size of short int = 2

> saoimage -u1 -i2 1999 1999 test. i &

> cd TEST/

/home/ iaertez/ALASKA/TEST
test. dsp test .i
> ../cODE/nonlin2dsize

Enter name of input image file : test.dsp

Enter the function desired:

1 -- Erosion of light areas (rein)

2 -- Dilation of light areas (max)

3 -- Median filter of the image

Enter

Enter

Enter

o
0

your choice [1...3] : 3

number of passes [1...10] : 2

value of size for kernel [3...15] : 3

16 32 48 64 80 96 112 128 144 160 176 . . .

16 32 48 64 80 96 112 128 144 160 176 . . .
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Enter filtered output file name : test.med3x2.dsp

> 1s

test.dsp test.i test.med3x2. dsp
>

> ../cODE/flatten

Enter image file to be histogram flattened : test.med3x2.dsp

Enter histogram file name : test.hst

Enter histogram flattened image name : test .med3x2.flt.dsp

> 1s

test.dsp test.i test.med3x2. flt.dsp

test.hst test.med3x2. dsp

> ../CODE/threshhold

Enter image file to be threshholded : test.med3x2.flt .dsp

Enter value of detection threshold [0...255] : 200

Enter threshholded image name : test.med3x2.flt .thr.dsp
>

> ../CODE/nonlin2dsize

Enter name of input image file : test .med3x2.flt .thr.dsp

Enter the function desired:

1 -- Erosion of light areas (rein)

2 -- Dilation of light areas (max)

3 -- Median filter of the image

Enter your choi,ce [1...3] : 2

Enter number of passes [1...10] : 2

Enter value of size for kernel [3...15] : 7

0 16 32 48 64 80 96 112 128 144 160 176 . . .

0 16 32 48 64 80 96 112 128 144 160 176 . . .

Enter filtered output file name : test .med3x2.flt .thr.di17x2 .dsp
>

../cODE/followboundarytopologyV2

Enter image file to find boundary in : test .med3x2.flt .thr.di17x2 .dsp

Enter What side of the image is the land. left==> -1; right ==> 1 [-1...11 : 1
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Enter Set threshold to use as criteria for land [0...255] : 200

Enter Do you want to input the row to start coastline search?

yes ==>1; no==> O [0...1] : 1

Enter Enter the row number to look for starting point [0. ..199o] : 1987

Enter Enter the row number to stop searching for coastline [lo. ..I99o] : 10

Enter boundary image name : test.bndry.i
>

> ../CODE/extract/removehdr test.med3x2.flt.thr.di17x2.dsp test.med3x2.flt.thr.di17
Number of Records (rows) 1999

Number of entries per record (c01s)1999

Data type (code )5

Data size (size of each element)2

> saoimage -ul -i2 1999 1999 test.med3x2.flt .thr. di17x2.i

> ..lCODEloverlay

Enter image file to overlay boundary on : test.dsp

Enter image boundary file to be overlayed : test.bndry.dsp

Enter overlayed image name : test.overlay.dsp
>

> ../CODE/extract/removehdr test.overlay.dsp test.overlay.i
Number of Records (rows) 1999

Number of entries per record (c01s)1999

Data type (code )5

Data size (size of each element)2
> saoimage -ul -i2 1999 1999 test.overlay.i &

B extractsubsetDSP.c

:inclnde ,)inclnd.,h+, /. This declar.a all the global var. as EXIEBI t. this file ./
?imclnde ,,glebal.h,, /* This declar.s all the globti ve.rs ●I
8iUChd0 ‘Sdefirms.h,, /* ~k iltChJdOSCOZISt~t and =cro defs*f

typdaf Strnct {

-ipti char type; f. data type ./

unsigned char elmant.siz.; j. siza of each demerit of data ./

usip~ short int records; /. mmh.r of data records +/

unsigned short Ant ret-length; /. number of elemmts ti each record .1

} =ADER;

mam(bt argc, char ●*argr)

{
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l****************.**8*8***.*****.****.***********...........*.***

This program extracts a subset from a S1 (... byte char image)

and makes It into a short tit DSP file,
●**.*.******●**,**.******************●*.**,**,****●.***.*******●f

I***********●***********=************..9...88.8..8●*.**********●*
.............**..**** VARIASLE DEumTI DIS********●..*.*.******** .

●****.*.****●***********●************●****.*******.************./

int i, isauakip, iC.bkip,

ilumsc..slr.,iHmOCoM.In ,

il-nsont, iHmnCcJnGut,

u~tsize, j~
unsigned char ~uignffer;

short int ~sisnffer ;

FILS tiilepInput, tiilepOmtputl, tiilepDutpatDSP;

HEADER ●hea&rtifo ;

hmderimfo = (EEkDER .) malloc(sizeof(SEkDES).1) ;

if((fil@npmt=f.pen(arg *[11,W,’))==lULL.)

{

printf(,,Unable to open input file %s~,,, a.rgv[l]);exit(0) ;

}

if((fil.ptlutpntDSP=f.pen(ar~[ 2],‘,.’,))-NIL)

{ prir.tf(Wnabl. to open c,atpntfil. %s w,, arg7[2]);exit(0);}

if((filqOntptI= fopen(argr[ 3],%,,))-loxl,)

{ printf(Wn.abl. to open cmtpm file x. b’,, ax~[3]) ;exit(0);)

printf(S<snter the number of rows to skxp b’,);

scanf(’,%d,,, kisomkip) ;

prmtt(s<Ektt.r the number of c.lmrms to skip b“) ;

smnf(’,%d,,, &iColskip);

printf(,,srherthe number of mm Input w,) ;

scanf(W.dOt, tihmSOssIn) ;

printf(%ute r the rmmhr of columns Input\n,,);

sc.mf(,%d,,, ki~doldn) ;

printf(,%ntar the mmber of rm?s Ontput~,) ;

Scmf(,?.d,!, tilnmllo.sent);

printf(T.uter the nmber of COlurms mtpt ~,);
SCti( ,,%d,,, kintiolsollt) ;

prir.tf(%ize of short int . %d m,, sizeef(short int));

ninte.ize = sizeof (unsigned char);

puiBuffar = (unsigned char .)mlloc(s izeof(m.sigmd char ) ● iIumColsOnt);

psiS@fer = (short tit ●)ml.loc(siz.mf(short tit ) . ilumColw3ut);

i=5; /. signed bteg.r ./
headerinfo->recorda = (.msigned short int ) ilmdlothsout;

head.rinfo->type = (unsigned chr.x) i; /. sign.d ir,t●I
headerinfo->rec _length= (unsigned short i.nt) iImnCelsOut;

h.adarinfo->element-size= sizeof (short int);

fwrite(headnrinfo,siz.mf(SEADER), 1,filepoutpntDSP);

for (i=O; i<iIumSossOut ; i++)

{

}

}

c

/. fseok t. correct mv.f

fseek(filepInput, (is.mmkip+i).i#ans%lsIn ● nut size ,0);

/. fs..k to correct range sari@.*/

fs..k(filepInpm.t, iColskip. .d.r.tsize,I);

/. read in th. number of samples to be promss.d ●I
freti(puisnffex,uintsize, il-lsDnt ,filOplnpnt) ;
f.r (j-o; j<ihrdCOlsOut; j+-+)

{

●(psiBnffer+j)= (short tit ) .(pniEmffe&j);

}
fmite(ps isuffer ,sizmf (short int), i~um(%lsoat,fil@utpntDSP) ;

fsrite(psisnffm ,sizeof(short ir,t), iMumColsOat,filepOntpntI);

removehdr.c

tillChd. ,,includeh,,

#include ,,global.h,,

*include “defines.h,~

f. This declares all the global var. m EXTESS to this file ./

/* l’hiSdeclares all the global FWS ●/
/. This includes constant and macro defs*l
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typed.afstruct {

unsigned char t~; I* data type ●/
nnsi.gnedchar element.siz.; /. size of each elem.nt of data ./

unsigne4 short int records; /. mmber of data records .1

unsigned short int ret-length; /. number of .lements in each record .1

} IISADER;

main(tit argc , char ●*arg. )
{

............ ●***********●************●*************************●*

..................... VABUW DEamn OIs,......................

*******,****●***********************.*************●************.j

int i,
];

short int =pihff.r;
FILE tiile@mpnt, tiilepCutputI ;

EEADSTl.h.aderinfo;

headerinf. = (HMDER .) raall.c(siz..f(EElDER). 1);

if((filepInput=f.p.9n(argv[1],,Y,))==IGI.L)

{

printf(’’llnabl.t. open input file !4sW,, argv[l]);. xit(0) ;

}

if((fil@ut@I=fopen( ~W[ 2],,,m,,))==m)

{ printf(“Unable t. open output file %s W,, argv[31);erit(0);}

fread(headerMO ,sizeof(SEAOSS), 1,filepInpnt);

printf(,,Mnmberof Secords (rod %d W,, headeriufo ->r.cords) ;

priutf(,,hmb.r of entries per record (cols)%d W,, headertio->rec.length);

printf(,,tntt.typa (code )%d W,, (int) he?.derimfc.->type);

prir.tf(,,Datasize (size of each elamr.t)%d tif, (int) headerinfo ->element-size);

pionffer = (short tit .)malloc(siz..af(short tit ) . headerinfo->ret-length);

for (i=o; i<(tit ) headertio->records; i++)

{

1. read in the nnmb.r of samples to be processed ./
fremd(piEmff*r,sizeof(sh.rt int) ,headerimf.->r..Je@h ,filepInpnt);

f.rit.(pi%dfar, sizeof(short int), hoaderinfo->rec-lcw+th, f ilepOntpntI);

}

D nonlin2dsize.c

:inclnd. <stdlib .D

*includ. <stdio.h>

:includa qth.~

:incltie %atrix h,,

tinclnde ‘aget h,,

10~I12D : This program does rein,mu, or median filterimg

of an hag. using the function nonl~d( )

IJFVIS:DSP format image file

DUTPUTS: DSP format ~. fil.

●☛☛☛☛☛☛☛☛☛☛☛●☛☛☛☛☛☛☛☛☛☛☛●☛☛☛☛☛☛☛☛☛☛☛☛●☛☛☛☛☛☛☛☛☛☛☛☛✎✎✎✎✎✎✎✎✎✎✏

maid )

{
mm x .In, ●OUT;
int i, pass.n, tital, filtype, size;

do{

11 = matrix-read (get-strimg(,,nams of tipnt image file,,));

}mhile( !11);

prtitf(,,~ter the function deair.d:~);

prir.tf(,, 1 -- Erosion of light areas (rein)W’);

printf(,0 2 -- Oilatinn of light areas (max)\n,,) ;

printf(,, 3 -- Median filter of the Smag.W) ;

inral = get-int(’’your choice”, 1, 3);

passes = Set-imt(’’nnmbor of pass*c.,’, 1, 10);

filt~. = inval - 1;

/. Get the size value as a user input ./
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size = ~et.int(%sITI. of size for kernd,, , 3, 15) ;

for ( i.O; i<pe.sses;i++){

OUT = nonlin2d(II, siz., filtype);
i++;

if (i < passes)

11 = nonlin2d(OUT, size, filtype);

}

if (passes%2)

matrix.urite(OUT, get-.tr~( filtered .ntput fil. namd’));
.1,.3

mdtr.x..rite (IH, g.t-str~ (’’filtered output file -,, ));

}

E threshhold.c

#include <stdi. .h>

tinclud. <std2ib,M

#include Gath b

#ill.lude “geth,,

*include hnatrix,h,,

I***********************●************●************●**********

Threshold : THIS PSOGRAH sill tbreshhold the hag.

at a value specified by the user.

IEPUTS: DIME TO BE threahholded 11 DSP FILS FOSIUT

OU’TPVIS: lEV Threshimlded 131AGE

●***.*******●***********●*************************........../

maino
{
DSP.FILE

luTiIx
ir,t
short int

char

*dsp-knfo;

*1#, .OUT;

i, j, tamp-tit, nin, max, threshold;

*in, ●ollt;

.in-nmn., trail [100];

I* Read knpnt file into a matrix structure, ./

do{

innam. = get-.tring(’’image file t. be tbr.shb.lded “);
IX = matrix-read (in-name.);

).hil.( !11);

if (IE->elmt-si z. != size.f(short int)){

printf(,,Ui+rr.r: Input file is not of fnteger typ.b,,);

exit(l);

}

mb . 0;

w = 255;

I* G.t the thr.shold value as a user input ./

threshold = get-tit(% due of detection threshold,,, min, max) ;

I* Using the thr.shbold create . rm. image

from the .riSir.al *I

OUT = mr.trix.all.cat.(11->ro.s, 11->coIs, sizeof(short tit));

for (i=o;i<I1->r.im; i++){

km = (short tit *)IE->ptr[i] ;

out = (short tit .)OUT-~tr [i];

for (j=o; j<II->cols ; j++){

temp-tit = in[j];

te~-imt = teqJr,t>2E.5 ? 25S : twp-int ;

temp-imt = temp-int<thr.shold ? o : temp-ht ;

out[j] . (short int) tempjmt;

}

}

/8 Write the n.. hag. to disk ./

matrix-urite (OUT, g.t-string(,,tbxeshholded imag. -I’));

}

32



F followboundarytopologyV2.c

tinclmd. <stdio .h>

lincltie <stdlib,lo

*include tie.th.ti

8include ‘Sget.h$n

Sinclnde Watrix,h,n

I***********●***********●*************************●**********

fall.wboundaxy: TEIS PROGRAM mill follow the boundary in

= *4. The user -t specify which half of

the image represents the ohject (land) A threshold

value will also b. input by the user to designate

a pixel 1...1 criteria to represent the object.

IIPUTS : ISAGE TO BE thresbhlde d 11 OSP FILE FOSHAT

Direction (i... which side of the image is the

object on )

Thre~ld to determine what is an object pixel

This modification (V2) asks the us.r for a start row,

and kls.aexits gracefnll, if the coastline fmlls off the

imag* at either side or bott.m of ~..

O-S : lEV bonudaq IHAGE

●*********** ************ ******.***,***.*********** . . . . . . . .../

maino
{
OSP.FILE

SATSIx

tit

short int
Chmr

.dsp-fi. ;

●II, ●OUI;
i, j, temp.int, rein,mc.x,OIR, threshold, orientation,

r.achodar.d, cleurpixels, c.r.t,pr.rpix, toggle, q, val, horizbmr,d,
below,belowl.ft, b.lmright, abov., abovel.ft, abo..ri~ht,

B.@nT.apo, SndTopo, Be@nStat. , starti, startj, nserinpnt ,

mini, .xitrow;

●in, ●out, ●inbalOm, ●inabav*;

●in_MM, trail [I(X J];

/. Saad inputfile imt. a matrix strnctmx.. *1
do{

in-nam. = g.t-string (“image file t. find boundary in “);
11 = matrix_read (in-name);

}whil.( !11);

if (IM->el.mant-size != sizeof(short tit)){

printf(~,Uirror: Input file is not of integer type~’);

exit(l);

}

min.-l;

Max-l;

/. Get the direction that the botuidary finder should travel.

If the hurl is on the right side of the image, the b.aur.dary

fti.r =i~ travel clockwise, and DIR=l;
If the land is o. the left side of the image, the boundary

finder mill travel counter clockmis. and DIR = -1;

*I
DIR = get-int(,,Uhat side of the image is the land, left=> -1; right ==> 1,$,rein,mad ;

mill= 0;

max = 25S;

threshold = get-tit(,,Set threshold t. us. as criteria for land,,,min.,max) ;

1

stc.rti= o;
startj = 0;

us.rimpnt = g.t-int(,0D. ym want t. input th. row to start coastlkn. search? yes==>l; no=> 0°, , 0, 1);

if (naerinpnt=1 )

{
starti = get-int(,,Enter the row nmmb.r to look for starting p-aint,,,

rein, 11->rc.i+s -9);

i = starti;

exitrow = get-int(Wnt.r the row rmmber to stop seaI@Iimg for coastline’,,

10, 11->rows -9);

}
.1s0

{
i = IE>rows -9; /. httom most r.. ●I
starti = i;

}

f. Scan the bottom row input hag. for the first land pixel.

For land or. right, dir-l, start scanning from th. left.

For land on left , dir=-1, start scanning from the right.

●I

in = (short tit .)II->ptr[il;

if (01S .= 1)
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{
1.0:

~hil. ”((int )in[jl < threshold)

{

printf(,,i,j = %d, %d, val = %d b’,, i, j, in[j]);
j++;

if (j==I1->cols-1)

{

printf(,Wo starting point fow,d en row %d N,, starti);

exit;

}

}

}
.1s. if (DIR == -1)

{
j = 11->.01s -1;

.hih ((int )in[j] < threshold)

{
j_;

if (j==O)

{

Prtitf(“w. .tart~ point found on r.. %d w’, starti);
.X,t;

}

}

}

1.
Start pixel is [i, (j-DIR)]
Start orientation is SO + DIR*9o

*[
j= j-DIR;

orientStion . W + sD.DIR;

startj . j;

nuni = starti;

printf(,,Stmrting pixel is (%d, %d) b“, i, j);

reached.nd = O;

do

{
~

= (short int *)11->ptr[i] ;

/.
Cent= getJLt (,,Centinn. the smxch,,, dr,, mad ;

./

printf(,,b in[%d, %dI = %d W,, i, j, (tit) in[j]);

primtf(a,orientation = %d b ,,,orientation) ;

mmi = i< mini? i : mini;

if (i <exitr.w)

{
printf(,,Saached top (i = %d ) W,, i);

while (in[j] <threshold)

{
j.j+~~s;

}

in[jl= -i;

rec.h.deti . 1;

}
.1s. if ( (abs(i-st’drti)< 1) M ((starti - mini)> 15)

{
printf(,Weach.d bottom again (i = %d) b“, i);

r.ach.dend - 1;

}
.1s. if ( (j--O) M ((int )in[jl>=thr.sh.ld) )

{

W] = -1;
orientation = O;
ii-i ;

}
.1s. if ( (j==IM->c.ls -1) Cl ((int )in[j]>=thr.shold)

{
in[j] - -1;

printf(,,lsarkedpixel is (%d, %d) bI”, i, j);

c.ri.ntation = 180;
ii-i ;

}

)

)

elmif( ((int )in[j] >=thresh.ld) II ((int )in[jl == -1) )

{

in[jl = -1;
switch (orientation)

{
case 0:

printf(,,Cas.0 Land b’,);

i = i-DIR;

break;

case 270:

printf(,,Case 270 Lsnd h“) ;

j = j+OIR;

break;

CM. 180:
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printf(,,Cas. 180 Laud W,);
i . i+DIB;

break ;

case so ,

printf(’’Case90 Land \n,,);
j . j.~~~;

breti;

}
orientation =

(orientation + 90.DIR) < 360 ? (orientation + W.DIR) : (orientation + SO.DIR)-360;

}

.1s.

{
switch (orientation)

{
case 0:

printf(,,Case O w,);

i . i+DIR;

break;

.=. 270:

prkntf(,,case 270 b’,);
j. j-DIR;

break;

case 180:

printf(Was. 180 b,,);
i. i-DIE;

break;

can. 90,

prkntf(,$cas. 90 W,);
j= j+DIR;

break;

}
ori.ntation =

(.rientation - 90*DIR) >= O ? (orientation - W.DIR) : (orientati.n - go.DIR)+31j0;

}}
.hile (1’eachedend==o);

printf(,, Finished marking pixels ~ ,,);

OUT . matrix -alloca.te(I#->rows , 11->..1s, sizeof(short tit));

if (DIR = 1)

{

/. LATE3, CDPY TEE IMGE samouw sows AT BOSOSS3 W31CIImm JT SCAEISO ./

for (i=l; i<l#->r.tm-l; i++)

{
.l.c.rpixels= 1;

prerpix = O;

horizbound = 0;

in = (short tit ●)11->ptr [i];
inb.los= (short int .)IK-@tr [i+i];

inabove= (short int .)11-Wtr [i-l];

out = (short int .)OUT-~tr [i];

for ( j=I#->c.ls-2; j >=0; j_)

{

if (cl.arpixels =1)

{
tOq_int = in[j];

if (tq-int != -1)

{
temp-int = 0;

if (herizbun d ==1)

{
horizbound =0;

/. figure out end top.a./

below = inbelom[j+1];

bel.awleft= inbelow[j];

above = inabo..[j+1];

abowlef t = inaboTo[j];

if ( (belo!i=-1) II (belowleft = -1) )

{

bdTopo = 3;

}

.lS* if ( (akw --1) II (aboreleft = -1) )

{
EudTopo = 2;

}
/. Dapadins or,beginnins and end top.,

figmre out state for cl.arpixels ./

to~l. = B.f@nTopo - SndT.apo;

toggl. = toggle > 0? toggle: -l*toggle;

if (toggle -1) clmrpixels = BeginStat.;

.1s. if (toggle ==2) clearpixels = -1 * BeginState;

}
pr.vpix = O;

}
if (temp-iut == -1)

{
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tcq.int = 255 ;

if (prmpix== 0)

{

below = inbdcm [j];

belowright= nbelow[j +1] ;

above . inabove[j];

.b.aweright= inabo.e[j+1];

if ( (e.bo.e=-1) II (abo..right == -1) )

{
Be@Topo = 1;

}
.1s. if ( (below ==-1) II (belo.right == ‘1) )

{

Be@rLTopo = .4;

}

cl.arpix.as = clearpixels * -1;

}
If (prerpix== -1)

{
horizbonnd = 1;

Cleal’pixals = 1;

}
premix= -1;

}

ont[jl = (short int) temp-int;

}

.1s0 /. clearpixels = -1 ./

{
tamp-tit = in[jl ;
if (tamp-tit != -1)

{
prwpix= 0;

/. clearpix.ls = 1; ./

}

t~-tit = tamq_int>25S ? 255 , temp-int;
if (temp-tit == -1)

{

t--tit = 255;
if (prevpix== 0)
(

below = inbel.m[j] ;

belomright= inbelo.[j+1];

above = inabo.e[j];

ab...right= inab..e[j+1];

if ( (above--l) II (c.hverigbt ~ -1) )

{
Be@nTopo = 1;

}
.1s. if ( (below ==-1) II (belowright == -1) )

{

BeginStat. = clecrpix.ls;

Cleqix.ls = cl.arpixels * -1;
>

if (pre@ x=- -1)

{
h.rizbouud = 1;

clea,rpixels = 1;

}

tq-tit = tq-int <threshold ? o : temp-int;

ont[j] = (short im) tamp-int;

}

} I* for each c.lum ●1
} /. for each r.. ./

} /*DIR-l*/
.18. if (DIR = -1)

{

/* LATSR , COPY TBE MACE SUGIDASY SOWS AT BOBDSS.SUBICB ASSI ‘T SCMHSO ●/

for (i-l; i<II->rows-l; i++)

{
cl.arpixels = 1;

premix = O;

horizbonad = O;

in = (short tit .)II->ptr[il;

nb.1.m= (short tit .)IE->ptr[i+l];

inabo.e= (short tit .)11->ptr[i-l];

oat - (short tit .)GGT-@tr[i ];

for ( j = 1; j< 11->..1s-1; j++)

{
if (Clearpixels -1)

{
temp-int= in[j];
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if (temp.int != -1)

{
temp-int= o;

if (h.rizbound ==1)

{
horizbonnd -J;

/. figure out end t.po ●I
below = inbd.w [j-l];

bel.uright= inb.low[j];

above = inab.ro[j-i] ;

abov.right= tna.bove[j];

if ( (ab.a.e=-l) II (ab.v.right == -1) )

{

EndTop = 1;
1

.1s. if ( (below ==-1) II (bel..right == -1) )

t
EndToII.= 4;

}

f. Oepending on beginning Mul and topo ,
figum ont *tat* for clearpixels ●I

to@. = B@nTOpO - 3r,dT.apo;

toggle = toggl. > 0? toggle : -i.to~gle;

if (t O@. =1) c1.a@xd S = B@r,Stat. ;

else if (toggle ==2) clearpixels = -1 ● Be@n3tat.;

}

prerpix = 0;

}

if (temp-iut = -1)

{
teq_M = 255 ;

if (prevpix= 0)
{

below = inbelom[j];

belomlaft = inbelo.[j-1];

&b... = inabo.e[j];

abc..elaft= inabove[j-1];

if ( (below=.-l) II (belo.1.ft E -1) )

{
BeginTopo = 3;

}
.1s. if ( (ab..e ==-1) II (ab.woleft s -1) )

{
Be@aT.ap.a = 2;

}

Be@n3tate = clearpix.ls;

Claarpixels = C1.arpixels ● -1;

}
if (pr.@ z== -1)

{
horizbonnd = 1;

cl.upixels . 1;

}
prerpir= -1;

}
mlt[j] = (short int) temp_iILt;

}
else /. clearpixels = -1 ./
(

tnmp_int = in[j] ;
if (temp-int != -1)

{
pr.rpix. O;

/. cleupixals . 1; *I

}

t~-~t = t~-tit>~hs ? 255 : temp-tit;
if (t@q-int - -1)

{

t=p-~t = 2=;
if (pr.rpix- 0)

{
below = inbel..[j] ;

belowlaft = inbelo.[j-1];

abo.. = irabo..[j] ;

abov.1.ft = ir.ab.a..[j-1];

if ( (below-=-l) II (b.loul.ft - -1) )

{
BeginTopc. = 3;

}
else if ( (abre ==-1) II (ab-xeleft e -1) )

{
Ba@nT+.o = 2;

}

B.3gin3tate = clearpixels;

cleaqixel.s = clearpixels ● -1;

}
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if (prevpix== -1)

{
horizbound = 1 ;

cl.axpix.ls = 1;

}
prevpix= -1;

}
teq.int = terq_int<tl’u.sh.ld ? o : temp-tit;

out [j] = (short tit) temp-tit;

}

} /. for each COIUIMI./

} 1. for each row ./

I* DIR = -1 ./

1. Wit. the new image to disk ./

matrix-write(OUT, get.string( ‘,boundax~imago name,,));

}

G

#include

aincltie

*inclnde

*include

*inclllde

overlay

<stdio .h>

<stdlib.ti

Qnath.W

“geth“
,imtrix. h,,

/************************************************************

overlay: THIS PSOGILM will overlay a boundary o.er the image

IIPUTS:

IMoE with boundary TO BE o..rlqed II OSP FILE FOMSAT

II!AGEin which to overlay bmndary 11 DSP FILS FOSMT

OUTPUTS: EEU ov.rl.pd IYILGE

malllo

{
DSP-FILE ●dsp-irh ;

YUTSII ●II, ●OIFT,811B;
lr.t i, j, temp-intb, temp-int, udn, _, thretiold;

short int *in, *out, .inb;

.har ●in_name, ●in--b, tr.~1[100];

/. S9ad input file into a matrix strm.tnre. ./

do{

in-mu = got-strq (“image file t. overlay boundary ..”);
11 = matrix-read (in~e);

}.hil.( !IX);

lf (~.->.l-~t-.i.. !. .iz~~f(*~=~ ~~)){

printf(,,tiror: Input file is not of integer type~m );

exit(l);

}

/. bad UIpnt file imto a matrix stru.tmr.. ./

do{ -

iro.am.b = g.t-.trtig(”~e bonruiaryfile to b. ow.rlapd ,,);
IIB = matrix_r.ad(in=ameb) ;

}whil.(!11B);

if (IIB->elament-8ize != sizeof(altort int)){

printf(,,MrrOr: Input file is not of knt.ger typ.b’,);

exit(l);

}

1. Usfng th. thr.~old create ● new image
from the original ./

OUT = t&itrix_r.11.cat.(IH->ro.s, 11->coIs,

for (i=o; i<In->ro.s; i++){

in = (short int .)lI->ptr[il;

inb . (short int .)IIB-@tr[il;

out - (short int ●)OOf-~tr[il;
for (j=O; j<I#->..1s ; j++){

temp-int = in[jl;

tcuomintb = inb[il;

sizeof(short tit));

tem+i-tit = teq-titb==25S ? 255 : terqdk;
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omt[j] = (short int) temp.imt;

}

f. Write the new hap to disk ./
matrix-write (OUT, get-strimg(,,.verlay.d image w.,,)) ;

}

H

*inclllde

*include

linclude

*inclnd*

*inclnde

overlay 5x5. c

<stdi. .h>

<stdlib,ti

kth. iV

,,geth,,

ahtrix. h,

I***********●***********●************●************●**********

overlay : TEIS PROGRAS sill overlay a boundary over the hag.

The b+umiary ill b. ov.rlayed sith a 5x5 width.

IIPUIS:

IIUGE with boundary TO BE ..erlay.d 11 DSP FILS FOGIYAT

IMAGE km which to o.erlay b.aundary IM DSP FILE FOF2!AT

OUTPUTS: ESU overlapd RUGE

●*******,***●************************●************........../

maiuo

{
OSP.FILS ●dspJnfo ;

mm x ●I1, ●OUI, .OUTTSICK , .IBB;

int i, j, ii, jj, tenp_intb, terqdnt, rein,-, tti.hold;
short tit .ir.,●ut, .ontthick, .inb;

char ●ti- , *in-rob, trail[ICO];

/. Sad input fil. into a matrix stru.tru.. *I
do{

in= = get-string(“image file to overlay boundary ..OO);
IH . matrix_read (in~.) ;

}ffhile( !11);

if (11->.lazaant-si24 ! = size.f(short int)){

printf(,,!nError: Input file is not of integer typeb’,);

exit(l);

}

/. R9ad input file into a matrix strmcture, ./

do{

in-rmm.b = get-string( “has. b.undaq file to be ov.rlay.d ‘,);
IIB = matrix_read(in-nameb);

}.hile(!IEB);

if (II&> .l~*nt_ size !. sizeof(*0 ~ tit)){

printf(aShErrOr: ~~t fil. ~ ..t .f int.wr typ.kin);
exit(l);

}

I* Uskng the thresbh.ld create a new -e
fr- the .ri@r,al ./

OUT . matrfx-allotr,t.(11->ross, IE->coIs, siz.of(short tit));

0U17BICI = matrix-allotat*(I1->rmas, 11->..1s, siz..af(short tit));

for (i=o; i<IE->r..#s; i++){

in = (short int ●)ll->ptr[i];
inb . (short int .)IEB-@tr [i];

out = (shorf tit .)OUT-@ tr[i] ;

o.tthick = (short tit ●)OU1l’SICS->ptr[i];
for (j-o; j<II->cols ; j++){

temp-int = in[j];

temp-intb . inb[j];

tq_ht = tempJtltb==2s5 ? 2s5 , temp-bt ;
.mt[jl = (short tit) temp-ir.t;

cmtthick[j] = omt[j];

}

}

/. Wit. the ... image t. disk ./

matru-.rite(0OT, get-string(,,.v.rlay.d hag. name,,));
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for (i=5; i<II->r.w..Li; i++)

{
out . (short int .)OUT->ptr[i] ;

for (j=5; j<IR->cols-5; j++)

{
if (.ut[j] = 255)

{
for (ii = -5; ii <6; iit+)

{
outthick = (short int .) OUllHICl(-@tr[i+ii] ;

for (jj = -5; j] < 6; jj++)

{
outthick[j+jj]= 255;

}

}

} /. end if ./

} /. ond j*/

}/* end i./

/. Urite the new thick imag. to disk ●I
matrix.nrit.(OUTTSICK , get-stri# ,,.v.rle.yedTEICI(~. name,,));

}

I coastpreprocFinal.c

#include <stdlib .h>

#include <stdi..h>

Sinclti. Quath,&

*include ,titrix.h,s

Sinclnd. ,,~et h,,

/***********●***********●************●************●***********

coastpreproc : This program does the seqnency of image

IKIJTS :

OUTPUTS

processing steps necessary to .cc.ntnat. the land/

water boundary for c.astltie detection,

The steps Are :

- a 2 pass median filter to get rid of speckle

- a hi8togrua flattening

- a threr.holdi~ step

- a 2 pass dilation with kemal size of 7

Tim parameters for these operations are fixed in

the cod. (i... they are not input by the user)

They may ned to b. tuidd2ed with later.

OSP fomt image file.

The image must b. a short int file.

DSP format image file.

This file will b. the iaput t. the coastline det..t.r

●☛☛☛☛☛☛☛☛☛☛☛●☛☛☛☛☛☛☛☛☛✎☛☛☛☛✎☛☛☛✎☛☛☛✎☛☛☛☛☛☛☛☛☛☛☛☛☛☛✎✎✎✎✎✎✎✎✎✎✏

me.ino
{
HATkl1 *11, ●OUT, ●TEHP ;
int i,pass.,, in.al, filtype, size;

1. variables fr- flatten ./
flost .hist-arra,;

double image-size, temp-flt;

int j, rA.._gray_lerel[2561, temp.tit;

short tit ●in, ●out;

char .in-namn, trail[lCO] ;

/. variables from thr.shh.ld./
int rein,Max, threshold;

/. First get IIIthe name of the knpmt file ./
do{

11 = matrix-read (g.t_string(,,- of input image file,,));

}.hile( !11);

1. Our next step is to do a 10 pass mediam filter,
so inm2 = 3 (determined b, the ..nlin2d function to

do median filter)

and passu = 10

Kermd size is 3

.1

U!lti . 3;

passes = 2;
filtype = invti - 1:
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size = 3; /. it can be betmeen 3 and 15 ./

I*

Call the functicm n.nLin2d to actue.llrimpl~ant the median
filter. ‘rh.output of nonlin2d is a pointer to the

filtered image.

●I

prtitf (WEDIA1 FILTE211G ~ ,,);

for (i=O; i<passes; i++){

OUT . n.nlin2d(IJ, size, filtypa);
i++;

if (i < passes)

IH = nonlin2d(O~, size, filtyp.);

}

/. If YOU alter the number of passes to be other thau 10,
the pinte,r t. the result ma, b+ either 11 or OUT,

If the number of passes is odd (passesX2 =1) the remit

is in OUT,

If the number of passes is even (pa8ses%2 =0) the result

is in Il.

●I

/. 1.., me want t. flatten ..t the median filtered hag. ./

printf(,,FLATTEIIIC IYMGE ~ ‘I);

I**** ****-* ●*********** ●************ ●************ ●**********

FLATYE1 : TKIS PSOGS4SYUSES TEE MCTIOI histogram rO LEVEL

TEE HISTOGSAH OF AI IWGT IHACE

II~S : IMAGE TO BE I?ISTOORAS ~AT~~D 11 DSP FILE FOSHAT

DuTPuTs: HEW ~@E WITS FLITTESED HISTDGSAB

**********.**.***********************●☛☛☛☛☛☛☛☛☛☛☛☛✎✎✎✎✎✎✎✎✎✎✏

/. Omr input file for the histogram is pointed to by the pointer
11 ●J

/. Calcu.hto the mmb.r of pixels in the ~e. ./

image.siz. = (domble) IH->r.tm . (double) IE->..1s;

f● Create an array of 256 fl.ats .hi.h represent the number
of pixels in the image at a particnlnr gray level.

writ. the axray t. disk as the fir.t record in a

two record DSP file, ./

hist.army = histogram (11,0,25S);

f. The following co=ented section can km used to write the histogram,
if de. imd. ./

#ifdef USI’YSSISTOGSASIS

do{

dsP_info = .Par.-.rite(t.string(g(,,histogrc.mfile nama$,),FLOAT,2,256);
}.bile( !dsp-fi.) ;

write-r...rd((char .)hist_array ,dsp-info);

aendif

/. Using the histogram array create . mapping of the original

gray levels to the new histogram flattened gray 1...1s .1

tamp-fit = o. ;

for(i-o; i<256; i++){ I* LooP tkmi original gray levels +1

/. Find the distribution function of the image at each gray 1...1 ./

tq.flt += hist-array [il/imag.-size;

1. Us. the distribution function to create the mapping

from old to nem pay le.els ●I
n.w-gzay-level[il = (255,.temp-flt) + O.5;

}

/. Osing the new ma@ng of gray levels create a ... image

frm the ori@nal ./

OUT = matrix_all.cat.(II->rows, 11->coIs, sizeof(short tit));

for (iq; i<II->roms; i++){

km - (short int .)11->ptr[i] ;

out = (short knt ●)OO1-~tr [i];

for (j=o; j<I1->cols ; j++){

temp-tit . in[j];

temp-tit = temg-imt>2S5 ? 255 : tmp-int;
tOmp-int = temp-int<O ? o : temp-int;

out[j] = new-gray-level [temp.intl ;
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}
}

;ifd.f USIIEEISTOGRN13

I* Find the histogram of the I...1Tcreated image and mite as the

second record in the file which is already open ./

hist.array = histogram (OUT,0,255) ;

sr.t.-record((char .)hist.array ,dsp-tie) ;

/. make descriptive trailer for output histogram fil. ./

sprmtf (trail,

‘,llist.gramsof file %s before and after flatten~( ,in-name);

write-trailer(trail,dsp-info);

#ar,dif

/. The flattened image is pointed to by OUT ./

1. The next step is totbresblmld the image ./

1. Oux upnt file for the threshold is pointed to by the pointer

OUT ●I

printf(“ TSSESl1510 UJIIG IMAGE \n ,,);

min = o;

m = 25S;

/.The tbr.sbbold we s?iLlus. ia 200.

This MAy n.ed to be t.caked later z’b.etbrashhold

~.tid b. hetwem O and 2S5 ●I
threshold = 200;

/. Using the threshold create a new image from the original ●/

/. T. makethe tezminol.gy ok, let 8a assigm the value of the pointer

OUT to the p+ir.t.rlE. Then .. can us. the cod. in thr.shb.ld ..

as is, ./

TEMP = 11; /. save the l.cation that 11 pointed t., since
it -as a2rcmuiyallocated ./

11 = OUT;

OUT = TRIP;

for (i=o; i<IE->rows; i++){

in = (sh.rf int.)IK-@tr [i];

cmt . (short int ●)OUT-~t. [i] ;

for (j-O; j<IE->c.ls ; j++){

tnmp-int = in[j];

temp-int = temp-tit>255 ? 255 : temp-nit;

tOUtP_ir.t= temp-int<threshold ? 0 : temp-tit;

out[j] = (short int) temp-tit;

}

}

/. TIM thresbholded image in pointed to by OUT +/

/. To tie th. t.rminology ok, let]s assign the vtiu. of the pointer

OUT to the ~int.r 11. Then me .- US. the code ti nonlin2d c

as is. ./

TFXP = 11; f. save the location that In pointed to, since
it was alr.3&iTallocated ./

11 = OUT;

OUT = T5XP;

I* The final step i. t. dilate the ~. sith . kernel of 7

and with 2 pass..,

Prtitf(” DILATIJQ IKAQE ~ u);

so inval = 2 (detarmin.d b, th. nonlidd function t.

d. median filter)

and pl15S.S= 4

Kernel size is 5

./

inwal . 2;

pans.. = 2 ;

filt~. - inval - 1;

size = 7; /. it can b. between 3 and 1S ./

I*

CaLl the function nonlizild to actne.11,implement the dilation

filter. The output of n.nLin2d is & pointer to the filtered image.

*1

for (i=o; i<passes; i++){

DUT = nmMn2d(IE, size, filtyp.);
i++;

if (i < pass..)

11 = nonLin2d(0UT, size, filtype);

}

J. If you titer the nnmb.r of passes t. ha other than 10,
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the pointer to the r.mlt may be either II or OUT.
If the number of passes is odd (pass..%2 =1) the resmlt

is in OUT.

If the number of passes is even (passes%2 =0) the result

is in 11,

●I

if (passes%2)

matrix_ .rite(OUT , Set-string (CScOastpreprocessed file name,,));
.1s.

matrix-.rit.(11, get-str~( ‘Scoastpreprocessed file name,,));

} /. end main ●I
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